160 research outputs found

    Fourier bases and Fourier frames on self-affine measures

    Full text link
    This paper gives a review of the recent progress in the study of Fourier bases and Fourier frames on self-affine measures. In particular, we emphasize the new matrix analysis approach for checking the completeness of a mutually orthogonal set. This method helps us settle down a long-standing conjecture that Hadamard triples generates self-affine spectral measures. It also gives us non-trivial examples of fractal measures with Fourier frames. Furthermore, a new avenue is open to investigate whether the Middle Third Cantor measure admits Fourier frames

    On Lebesgue measure of integral self-affine sets

    Full text link
    Let AA be an expanding integer n×nn\times n matrix and DD be a finite subset of ZnZ^n. The self-affine set T=T(A,D)T=T(A,D) is the unique compact set satisfying the equality A(T)=âˆȘd∈D(T+d)A(T)=\cup_{d\in D} (T+d). We present an effective algorithm to compute the Lebesgue measure of the self-affine set TT, the measure of intersection T∩(T+u)T\cap (T+u) for u∈Znu\in Z^n, and the measure of intersection of self-affine sets T(A,D1)∩T(A,D2)T(A,D_1)\cap T(A,D_2) for different sets D1,D2⊂ZnD_1,D_2\subset Z^n.Comment: 5 pages, 1 figur

    Robust Coin Flipping

    Full text link
    Alice seeks an information-theoretically secure source of private random data. Unfortunately, she lacks a personal source and must use remote sources controlled by other parties. Alice wants to simulate a coin flip of specified bias α\alpha, as a function of data she receives from pp sources; she seeks privacy from any coalition of rr of them. We show: If p/2≀r<pp/2 \leq r < p, the bias can be any rational number and nothing else; if 0<r<p/20 < r < p/2, the bias can be any algebraic number and nothing else. The proof uses projective varieties, convex geometry, and the probabilistic method. Our results improve on those laid out by Yao, who asserts one direction of the r=1r=1 case in his seminal paper [Yao82]. We also provide an application to secure multiparty computation.Comment: 22 pages, 1 figur

    All functions g:N-->N which have a single-fold Diophantine representation are dominated by a limit-computable function f:N\{0}-->N which is implemented in MuPAD and whose computability is an open problem

    Full text link
    Let E_n={x_k=1, x_i+x_j=x_k, x_i \cdot x_j=x_k: i,j,k \in {1,...,n}}. For any integer n \geq 2214, we define a system T \subseteq E_n which has a unique integer solution (a_1,...,a_n). We prove that the numbers a_1,...,a_n are positive and max(a_1,...,a_n)>2^(2^n). For a positive integer n, let f(n) denote the smallest non-negative integer b such that for each system S \subseteq E_n with a unique solution in non-negative integers x_1,...,x_n, this solution belongs to [0,b]^n. We prove that if a function g:N-->N has a single-fold Diophantine representation, then f dominates g. We present a MuPAD code which takes as input a positive integer n, performs an infinite loop, returns a non-negative integer on each iteration, and returns f(n) on each sufficiently high iteration.Comment: 17 pages, Theorem 3 added. arXiv admin note: substantial text overlap with arXiv:1309.2605. text overlap with arXiv:1404.5975, arXiv:1310.536

    Tiling groupoids and Bratteli diagrams

    Full text link
    Let T be an aperiodic and repetitive tiling of R^d with finite local complexity. Let O be its tiling space with canonical transversal X. The tiling equivalence relation R_X is the set of pairs of tilings in X which are translates of each others, with a certain (etale) topology. In this paper R_X is reconstructed as a generalized "tail equivalence" on a Bratteli diagram, with its standard AF-relation as a subequivalence relation. Using a generalization of the Anderson-Putnam complex, O is identified with the inverse limit of a sequence of finite CW-complexes. A Bratteli diagram B is built from this sequence, and its set of infinite paths dB is homeomorphic to X. The diagram B is endowed with a horizontal structure: additional edges that encode the adjacencies of patches in T. This allows to define an etale equivalence relation R_B on dB which is homeomorphic to R_X, and contains the AF-relation of "tail equivalence".Comment: 34 pages, 4 figure

    Korkin-Zolotarev bases and successive minima of a lattice and its reciprocal lattice

    Get PDF
    Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe

    Pure point diffraction implies zero entropy for Delone sets with uniform cluster frequencies

    Full text link
    Delone sets of finite local complexity in Euclidean space are investigated. We show that such a set has patch counting and topological entropy 0 if it has uniform cluster frequencies and is pure point diffractive. We also note that the patch counting entropy is 0 whenever the repetitivity function satisfies a certain growth restriction.Comment: 16 pages; revised and slightly expanded versio

    Undecidable properties of self-affine sets and multi-tape automata

    Full text link
    We study the decidability of the topological properties of some objects coming from fractal geometry. We prove that having empty interior is undecidable for the sets defined by two-dimensional graph-directed iterated function systems. These results are obtained by studying a particular class of self-affine sets associated with multi-tape automata. We first establish the undecidability of some language-theoretical properties of such automata, which then translate into undecidability results about their associated self-affine sets.Comment: 10 pages, v2 includes some corrections to match the published versio

    Realization of Arbitrary Gates in Holonomic Quantum Computation

    Get PDF
    Among the many proposals for the realization of a quantum computer, holonomic quantum computation (HQC) is distinguished from the rest in that it is geometrical in nature and thus expected to be robust against decoherence. Here we analyze the realization of various quantum gates by solving the inverse problem: Given a unitary matrix, we develop a formalism by which we find loops in the parameter space generating this matrix as a holonomy. We demonstrate for the first time that such a one-qubit gate as the Hadamard gate and such two-qubit gates as the CNOT gate, the SWAP gate and the discrete Fourier transformation can be obtained with a single loop.Comment: 8 pages, 6 figure

    Computing Hilbert Class Polynomials

    Get PDF
    We present and analyze two algorithms for computing the Hilbert class polynomial HDH_D . The first is a p-adic lifting algorithm for inert primes p in the order of discriminant D < 0. The second is an improved Chinese remainder algorithm which uses the class group action on CM-curves over finite fields. Our run time analysis gives tighter bounds for the complexity of all known algorithms for computing HDH_D, and we show that all methods have comparable run times
    • 

    corecore